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Abstract 
 
Two systems are reviewed than perform automatic music 
transcription. The first perform monophonic transcription using 
an autocorrelation pitch tracker. The algorithm takes advantage 
of some heuristic parameters related to the similarity between 
image and sound in the collector. The detection is correct 
between notes B1 to E6 and further timbre analysis will provide 
the necessary parameters to reproduce a similar copy of the 
original sound. The second system is able to analyse simple 
polyphonic tracks. It is composed of a blackboard system, 
receiving its input from a segmentation routine in the form of 
an averaged STFT matrix. The blackboard contents an 
hypotheses database, an scheduler and knowledge sources, one 
of which is a neural network chord recogniser with the ability 
to reconfigure the operation of the system, allowing it to output 
more than one note hypothesis at the time. Some examples are 
provided to illustrate the performance and the weaknesses of 
the current implementation. Next steps for further development 
are defined. 
 
1. Introduction 
 
Musical transcription of audio data is the process of taking a 
sequence of digital data corresponding to the sound waveform 
and extracting from it the symbolic information related to the 
high-level musical structures that might be seen on a score[1]. 
In a very simplistic way, all the sounds employed in the music 
to be analysed may be described by four physical parameters, 
which have corresponding physiological correlates [2]: 
 

1. Repetition rate or fundamental frequency of the 
sound wave, correlating with pitch. 

2. Sound wave amplitude, correlating with loudness. 
3. Sound wave shape, correlating with timbre. 
4. Sound source location with respect to the listener, 

correlating with the listener’s spatial perception. 
 
The latter is not considered determinant for music transcription, 
and will be discarded for this investigation. The other three 
generate the difference between the parts that can be defined in 
a musical track [3]: the orchestra and the score. The orchestra is 
the sound of the instrument itself, the specific characteristics of 
the instruments (timbre, envelope), which make it sound 
unique; the score consists of the general control parameters 
(pitch, onsets, etc), which define the music played by the 
instrument. In an academic music representation, just the latter 
can be described, i.e. which notes to play and when to play 
them. The purpose of the present work is to automatically 
extract score “features” from monophonic and simple 
polyphonic music tracks, using an autocorrelation pitch tracker 

and a computational reasoning model called blackboard system 
[4][5] and combining top-down (prediction-driven) processing 
with the bottom-up (data-driven) techniques already 
implemented in [6]. As the analysis of multitimbrical musical 
pieces and the extraction of expression parameters are not in 
the scope of the present work, just the parameters related with 
pitch and loudness will be considered. 
 
2. Monophonic Transcription with autocorrelation 
 
If the fundamental frequency of a harmonic signal is calculated, 
and the resulting track is visualised, it can be noticed that, for 
most of the duration of the notes, the pitch maintains 
approximately constant. This relation, so clear to the eyes, 
requires some comments. In order to implement some grouping 
criteria and rules for sounds, emphasis should be given to the 
similarity in human perception between image and sound [7]. 
Important clues can be obtained by observing carefully the plot 
of the pitch track. The current system doesn’t use a 
conventional (energy based) onset detector, instead, it 
implements a pitch based onset detector, which is more robust 
with slight note changes (glissando, legato). 
Monophonic music means that the performer is playing one 
note at a time. More than one instrument can be played, but 
their sounds must not overlap. This is a big limitation for the 
amount of input sounds that can be processed, however, it leads 
to fast and reliable results. Many commercial software tools are 
provided on Internet to help musicians in the difficult task that 
is transcription. Few of them dare to perform polyphonic 
transcription, but often the results are completely wrong.  
Which information is needed? 
The score is a sequence of note-events. Many music languages 
have been developed until now and a new standard is arising 
under the MPEG group [3]. The MIDI protocol [8] has been 
widely accepted and utilized by musicians and composers since 
its conception in 1982. It represents the most common example 
of a score file. 
In order to define a note-event, three parameters are essential: 
 

• Pitch 
• Onset 
• Duration 

 
Every instrument is characterized by its own timbre, but the 
sounds created by different instruments playing the same note, 
will have the same pitch. Therefore, determining the pitch is 
equivalent to knowing which note has been played. 
The onset time and the duration have also to be extracted in 
order to recreate the original melody.   
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2.1. Autocorrelation Pitch Tracking 
 
In order to estimate the pitch in the musical signal, 
autocorrelation pitch tracking has been chosen, showing good 
detection and smooth values during the steady part of a note. 
The steady part of a note is just after the attack, where all the 
harmonics become stable and clearly marked in the spectrum. 
The Autocorrelation function 
An estimate of the Autocorrelation of an N-length sequence 
x(k) is given by: 
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Where n is the lag, or the period length, and x (n) is a time 
domain signal. This function is particularly useful in 
identifying hidden periodicities in a signal, for instance, in the 
weak fundamental situation. Peaks in the autocorrelation 
function correspond to the lags where periodicity is stronger. 

The zero lag autocorrelation )0(xxr  is the energy of the 

signal. The autocorrelation function shows peaks for any 
periodicity present in the signal, therefore it is necessary to 
discard the maximum relative to the multiple periodicities. If 
the signal has high autocorrelation for a lag value, say K, it will 
have maximum for n*K as well, where n is a positive integer. 
Consequently, the first peak in the autocorrelation function, 
after the zero lag value, is considered as the inverse of the 
fundamental frequency, while the other peak values are 
discarded. The implementation takes advantage of some 
algorithms implemented by Malcolm Slaney in the ‘Auditory 
toolbox’ [9], a Matlab toolbox, freely available, implementing 
auditory models and functions to calculate the correlation 
coefficients. 
Why autocorrelation ? 
Autocorrelation is simple, fast and reliable. The equation (1) 
represents a very simple relation between the time waveform 
and the periodicities of the signal expressed by the 
autocorrelation coefficients. 
The calculation of the autocorrelation is computed through the 
FFT, which has a computational complexity of N⋅log(N), where 
N is the length of the windowed signal. The calculation 
process, therefore, it is very fast. The simulations performed 
confirm the reliability of this method. In 1990, Brown 
published results of a study where the pitch of instrumental 
sounds was determined using autocorrelation [10]; she 
suggested this method to be a good frequency tracker for 
musical sounds.  
 
2.2. Transcription 
 
The transcription task is the translation from music to score. In 
the score all the notes played are listed in a time sequence, 
indicating the starting times, the durations and the pitches. The 
scheme of the monophonic transcription system implemented 
here, is illustrated in figure 1. 
The outputs of the blocks are explained in the next figures. The 
Pitch Tracker is based on the autocorrelation method described 
in section 2.1. Its output is the instantaneous pitch of the signal. 
Beside the pitch tracker, a block calculates the envelope of the 
signal. This information goes to the pitch tracker, in order to 
skip the calculation of the pitch when the energy of the signal 

falls below the audibility threshold. This procedure avoids 
ineffective elaborations. 
 

 
Figure 1. Scheme of the transcription system. 

 
Figure 2 portrays the output of the pitch tracker. The pitch is set 
to 0 in the silence parts. 
 

 
Figure 2. Pitch from autocorrelation 

 
The conversion of the pitch (Hertz), to key number is the result 
of a rounding up to the nearest musical frequency. Unless the 
pitch, the key numbers keep the same value during the steady 
part of a note. The relation is given as follow [11]: 
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Where the [ ]  operator calculates the nearest integer value. 
(Defined as piano keys from A1 = 1, to C9 = 88, with A5 = 49 
equivalent to the A at 440 Hz).  
 

 
Figure 3. Pitch2MIDI conversion 

 
If we consider a violin vibrato, in the rounding up process all 
the information regarding the frequency modulation are lost. 
However, the absence of frequency modulation in the 
synthesized sound has little effect on the perceptual response to 
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violin vibrato, while the absence of amplitude modulation 
causes marked changes in sound quality [12]. Moreover, an 
algorithm can extract the vibrato information from the signal 
envelope, after the sound has been segmented note by note 
[13]. 
The collector extracts the score, considering the pre-elaborated 
track and the signal amplitude, sorting: onsets, pitch and 
offsets. 
If the short-time autocorrelation is calculated on a monophonic 
music signal and the results are plotted, the pitch information is 
almost constant during the steady state parts of the notes. The 
attack part of a note is usually noisy; therefore, the pitch can 
oscillate in a wide range of frequency before stabilizing. The 
transient part can last a few tenths of msec and varies 
depending on the instrument family [14]. In the attack part of 
the signal, the pitch tracker cannot provide useful information 
for the transcription system. 
The collector recognises when the pitch maintains the same 
value, and proposes a note onset in the first value of the 
constant sequence. The onset is confirmed when the pitch lasts 
for the minimum note duration accepted. When a note is 
recognized, the system is able to write in the score file: the 
onset and the pitch of the note. 
The minimum note duration is the main parameter in the 
collector. By modifying its value, the system adapts to the 
speed of the music, improving the performance of the 
transcription. If the minimum note duration is set for instance 
to 40 msec, all the pitch sequences, with constant values, 
lasting less than 40 msec are discarded. Hence, errors 
concerning spurious notes are eliminated.  
The minimum duration parameter controls also the memory of 
the system: when a note is detected, the pitch can vary inside 
the 40 msec window before having again the same value, to be 
considered part of the same note. This is very similar to the 
consideration taken in sound restoration [15]: the human brain 
takes information from the cochlea, and interprets them with 
the knowledge of the previous samples; this behaviour is called 
streaming or integration process in psychoacoustics [7].  
The termination of a note is determined by the start of a new 
note or by the recognition of silence. After an onset, the offset 
detector checks if the signal energy falls below the audibility 
threshold. The duration of the note in the score is calculated by 
the difference between its onset and the next onset/offset.  
During the decaying part of a note, the pitch can slightly 
change. The collector allows the pitch to have different values, 
until a new note is predicted. However, if the conditions for a 
new note aren’t met, the system keeps the last note. 
 
2.3. Results 
 
The number of lags considered in the autocorrelation 
determines the pitch range of the transcription system.  The 
following table gives an idea of the relation between the 
autocorrelation coefficients considered and the pitch range 
covered (notes). 
No. coeff. From to 
256 E2 C6 
512 B1 E6 
 
Table 1. Relation between the number of autocorrelation coefficients 

and pitch range in the transcription system. 

 
The configuration with 512 coefficients was chosen in the 
transcription. The wider pitch range covered was preferred  to 
the faster computational time with 256 coefficients. 
To verify that the pitch has been correctly tracked and the 
melody of the original file has not been modified, the system 
writes a Csound [16] score file. By providing an orchestra file, 
the score can be converted into wav format. The orchestra file 
contains the description of the instrument. Hence, from the 
same score, the same melody can be re-synthesised with 
different instruments specifying different orchestra files.  
The test samples were obtained from a CD collection of brass 
instruments riffs. Comparative listening between the 
synthesised score and the original riffs, reveal the transparency 
of the transcription. By transparency, I mean that the tempo and 
the pitch are correctly extracted. 
As shown in Figure 2, the matlab script also plots the 
segmentation of the signal (top); the black circles indicate 
onsets, the red circles indicate offsets. Then, the bottom figure 
portrays the midi notes of the score file in a “piano roll” form. 
 

 
Figure 4. Original music (top) and score file (below). 

 
It was interesting to compare this system with a commercial 
program downloaded from Internet, performing WAV2MIDI 
[17]. Even if no specification about the transcription system 
was given, the two systems seem to work in a very similar way. 
The minimum note duration can be modified in both the 
system. Finally, the simulations results are both fairly 
successful. 
 
2.4. Conclusions 
 
This part of the paper has reviewed a traditional method of 
performing pitch tracking, widely used in speech processing 
and has demonstrated to be also good for musical instruments. 
Furthermore, the implementation of a successful monophonic 
transcription system has been illustrated. 
The transcription system described doesn’t have an onset 
detector based on the signal waveform. The onset is recognised 
only at the beginning of the steady state part of the signal. As a 
result the onset time precision can fail of a few tens of msec. 
The great advantage of this approach, is that in glissando or 
legato passages, the onset is easily detected. This is because the 
new note is recognised analysing the pitch, instead of looking 
at the energy of the signal, which is usually ambiguous. 
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The pitch and time of notes are the main features in 
transcription. However, other features like amplitude envelope, 
timbre and vibrato are important to synthesize a close copy of 
the original sound. The spectral analysis and the signal 
envelope will be investigated in order to extract those 
parameters. Furthermore, in order to detect very low pitched 
notes in the range of 30-100 Hz, the pitch tracker has to be 
modified to provide high frequency resolution renouncing to 
the fast calculation of the autocorrelation function through the 
fft.  
 
3. Simple Polyphonic Transcription: Blackboard System 
and neural network chord recogniser 
 
The blackboard system is a relatively complex problem-solving 
model prescribing the organisation of knowledge and data, and 
the problem-solving behaviour within the overall organisation 
[5]. It receives its name from the metaphor of a group of 
experts trying to solve a problem plotted on a blackboard, each 
acting only when his specific area of expertise is required in the 
problem. 
In opposition to the usual paradigm of signal processing 
algorithms, where algorithms are described by data flowcharts 
showing the progress of information along chains of modules 
[18], the architecture of the blackboard system is opportunistic, 
choosing the specific module needed for the development of 
the solution at each time step. Due to its open architecture 
different knowledge can be easily integrated into the system, 
allowing the utilisation of various areas of expertise. The basic 
structure of a blackboard system consist of three fundamental 
parts: the blackboard: global database where the hypotheses are 
proposed and developed, open to the interaction with all the 
modules present in the system; the scheduler or opportunistic 
control system: determines how the hypotheses are developed 
and by who; and the knowledge sources or “experts” of the 
system: modules that execute the actions intended to develop 
the hypotheses present in the blackboard. 
The system operates in time steps, executing one action at the 
time. The scheduler, prioritise within the existing list of 
knowledge sources, determining the order in which these 
actions are executed. Each knowledge source consists of a sort 
of  “if/then” (precondition/action) pair. When the precondition 
of a certain knowledge source is satisfied, the action described 
in its programming body is executed, placing its output in the 
blackboard. These knowledge sources can perform different 
kinds of activities, such as detecting and removing unsupported 
hypothesis from the blackboard or stimulating the search for 
harmonics of a given note hypothesis. 
To achieve the transcription of a sound file the system can 
perform tasks such as: 
 

1. The extraction of numeric parameters content in the 
original audio data-file, through the analysis of the 
output generated for signal processing methods such 
as the Short Time Fourier Transform (STFT), the 
Multiresolution Fourier Transform (MFT) [19] or the 
log-lag correlogram [18][20]. 

2. Elimination of non-audible or “irrelevant” data for 
the analysis performed, based on perceptual models 
of the ear and the brain. This helps the efficiency of 

the system, avoiding unnecessary computations and 
the generation of “impossible” hypotheses. 

3. The use of musical knowledge to discern the presence 
of patterns or forms in the musical composition being 
analysed. 

4. The use of “experience” for the recognition of 
musical structures in the audio file. 

 
There are several implementations of blackboard systems in 
automatic music transcription [4][20][21], however part of the 
knowledge a human being use to transcribe music is based on 
his/her experience hearing music files and the inherent 
structures present on these, and in those systems this 
knowledge is ignored. As [18] specify, the structure of the 
blackboard makes little distinction between explanatory and 
predictive operations; hypotheses generated for modules of 
inference can reconfigure the operation of the system and bias 
the search within the solution space. 
 
3.1 Top-Down and Bottom-up Processing 
 
In bottom-up processing, the information flows from the low-
level stage, that of the analysis of the raw signal, to the highest 
level representation in the system, in our case that of the note 
hypotheses. In this technique, the system does not know 
anything about the object of the analysis previous to the 
operation, and the result depends on the evolution of the data in 
its unidirectional flow through the hierarchy of the processor. 
This approach is also called data-driven processing. In 
contraposition, the approach when the different levels of the 
system are determined by predictive models of the analysed 
object or by previous knowledge of the nature of the data is 
known as top-down or prediction-driven processing [22].  
Despite of the fact that top-down processing is believed to take 
place in human perception, most of the systems implemented 
until now are based on bottom-up processing, and just in the 
last years the implementation of predictive processing to 
recreate these perceptual tasks had become a common choice 
between researchers of this field [1][18][22][23]. The main 
reason for the implementation of top-down processing is the 
lack of abilities in the bottom-up systems to model important 
processes of the human perception; also in tasks such as the 
automatic transcription of music the “inflexibility” of these 
models make them unable to achieve results in a general 
context, in this particular case different types of sounds and 
styles of music.  
In this work, the top-down processing is achieved through the 
implementation of a connectionist system. This kind of systems 
consists of many primitive cells (units), which are working in 
parallel and are connected via directed links. Through these 
links, activation patterns are distributed imitating the basic 
mechanism of the human brain, reason why these models are 
also called neural networks [24]. Knowledge is usually 
distributed throughout the net and stored in the structure of the 
topology and the weights of the links; the networks are 
organized by automatic training methods, which help the 
development of specific applications. If adequately trained, 
these networks can acquire the experience to make decisions in 
very specific problems presented. As extensive documentation 
of neural networks is available, no further explanation of this 
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topic will be developed here, just the basics of the implemented 
system are explained in section 3.2.3. 
 
3.2. Implementation 
 
3.2.1 Segmentation 
 
As is not the focus of this paper, just a brief explanation of the 
system’s front end is proportioned here. The onset detection 
aims to evaluate the time instants when a new note is played in 
a sound file. Whilst analysing the running spectrum of the 
sound it is possible to notice that when a new event occurs, the 
high frequency content is relevant. This property is exploited 
from the High Frequency Content method [25][26]. The 
measure of the high frequency content is given by: 
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Where N is the FFT array length (N/2 + 1 corresponds to the 
frequency Fs/2, Fs = sample rate) and X (k) is the kth bin of the 
FFT. The power spectrum is weighted linearly emphasizing the 
high frequencies in the frame. The Energy function E is the 
sum of the power spectra of the signal in the specified range: 
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In both equations the first bin is discarded to avoid unwanted 
DC bias. These equations are calculated on each frame and 
used to build the detection function: 
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Figure 5: The original signal (a tenor sax riff) and the detected onsets 
and offsets (crosses) of this signal, the HFC and the Detection function. 
 
As can be seen in figure 5, this function shows sharp peaks in 
the instant where the transient occurs. A criteria based on the 

slope of these peaks was used to determine the onset’s time. 
After this process, the segmentation is performed averaging the 
signal’s STFT between onsets. This is used as the input of the 
blackboard system. 
 
3.2.2 Blackboard Implementation 
 
The Blackboard system’s architecture implemented is based on 
that of Martin’s implementation [4] and is shown in figure 6.  
At the lower level, the system receives the averaged STFT of 
the signal and identifies the peaks of the spectrum. Of this 
group just the peaks higher than an amplitude threshold are 
consider to build a Tracks matrix, containing the magnitude and 
frequency of each. This information is feed to the database and 
exposed to the evaluation of the knowledge’s sources (KS) to 
produce new hypotheses. 
There are three different levels of information present on the 
database: tracks, partials and notes. The tracks information is 
automatically provided at the beginning of the system 
operation, however the notes and partials information are the 
product of the knowledge’s sources interaction with the 
database. It is the main task of the Scheduler to determine the 
need for a specific kind of information and to activate the 
corresponding knowledge source. In the present system a table 
of preconditions is evaluated at each time step and a rating is 
given to each knowledge source determining the order in which 
these will operate.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At tracks level, all the remaining peaks of the STFT have an 
equal chance of becoming notes, but as the operation of the 
system goes forward and new hypotheses are produced and 
evaluated by the KS, ratings are given to narrow the search for 
musical notes in the spectrum. 
In the case of the partials, the rating is based on the magnitude 
of the nearest peak (within a specific range) to the ideal 
frequency of the hypothesis. For notes, rating is based on the 
presence and magnitude of peaks corresponding to the ideal 

 
Notes 

 
Partials 

 
Tracks 

Music representation 

FFT Spectrum 

Knowledge 
Source 

Knowledge 
Source 

Knowledge 
Source 

 
Scheduler 

Figure 6: The control structure and the data hierarchy of 
the blackboard system  
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partials this note should have [27]. All this information is 
stored in a matrix called “Hypotheses”. 
 
3.2.3 Neural Network Implementation 
  
In the neural network implemented, the information flows in 
one way from input to output. There is no feedback, which 
means that the output of any layer does not affect that same 
layer. This type of network is known as feed-forward.  
The structure of this implementation consists of three layers: an 
input, an output and a hidden layer. The activation function 
implemented for all the neurons is the sigmoid transfer 
function. The learning is supervised. Training a feed-forward 
neural network with supervised learning consists of the 
following procedure [24]: 
 

1. An input pattern is presented to the network. The 
input is then propagated forward in the net until 
activation reaches the output layer. This is called the 
forward propagation phase. 

2. The output of the output layer is then compared with 
the teaching input. The error, i.e. the difference δj 
between the output oj and the teaching input tj of a 
target output unit j, is then used together with the 
output oi of the source unit i to compute the necessary 
changes of the link wij. To compute the deltas of 
inner units for which no input is available, (units of 
hidden layers) the deltas of the following layer, 
which are already computed, are used in a formula 
given below. In this way the errors (deltas) are 
propagated backward, so this phase is called 
backward propagation. 

3. In this implementation offline learning is used, which 
means that the weights changes ∆ωij are cumulated 
for all patterns in the training file and the sum of all 
changes is applied after one full cycle (epoch) 
through the training pattern file. This is also known 
as batch learning.  
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Figure 7: The learning performance of the neural network 

implemented. 
 
Here, the input pattern consists of a 256 points spectrogram of a 
piano signal’s segment (either a note or a chord), part of the 
batch of samples covering three octaves of the instrument. The 
target output is just represented for the absence “0” or presence 

“1” of a chord in the sample. The weight changes were 
calculated using the backpropagation weight update rule, also 
called generalized delta-rule, which reads as follows [24]: 
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where: 
η learning factor eta (a constant) 
δj error (difference between the real output and the 

teaching input) of unit j 
tj     teaching input of unit j 
oi    output of the preceding unit i 
i      index of a predecessor to the current unit j with link 

wij from i to j 
j     index of the current unit 
k index of a successor to the current unit j with link wjk 

from j to k 
 
The learning performance of the network is shown in figure 7, 
where the value of the error through the cycles can be seen. 
 
3.2.4 Neural Network Interaction with the Blackboard  
 
The network is trained off the process of automatic 
transcription until it obtains a set of parameters adequate to the 
task required, in this case the recognition of the presence of a 
chord in a spectrogram. When the overall system is running, the 
network receives as an input the same STFT data the 
blackboard system analyses. In the original blackboard’s 
process, just the note hypotheses with rating bigger than a cut-
off threshold remained as valid hypotheses [5], in this version 
of the system, the output of the neural network change the 
performance of the system allowing more than one note 
hypothesis to survive if necessary. This process reshapes the 
Hypotheses matrix and the routines that manipulate it, allowing 
the handling of a chord as a possible output of the system. In 
this first approach, just chords of two or three notes can be 
identified by the system. 
After the selection of hypotheses is made, each of the 
frequencies obtained is rounded towards the nearest ‘musical’ 
frequency using equation (2) given in section 2.2. The key 
number obtained is rounded towards the nearest integer and 
introduced in equation (9) [11], where fnote is the nearest 
‘musical’ frequency: 
 

( ) 12/492440 −×= kn
notef                                    (9) 

 
The output is given in two different ways: a graphical 
representation and a score file in CSOUND™ language [28]. 
The graphical representation is in the form of a ‘piano roll’, 
which is a common way of representing musical events in most 
MIDI sequencers. The score file, is a text file written in 
CSOUND™ protocol, which can be compiled and rendered 
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with an Orchestra file (a sine wave sound for these 
experiments), obtaining an audio representation of the original 
sound. 
 
3.3 Examples 
 
Three examples are shown here to illustrate how the system is 
working and to define the next steps to follow. In the first 
example, illustrated in figure 8, a piano riff is plotted, 
consisting on a succession of four notes (C5 D5 E5 F5) followed 
by a C major chord (C5 E5 G5). The notes and the chords are 
recognized successfully by the system, which plot the output 
according to the key number of each note. This example is 
intended just to show the main capabilities of the current 
system, notice that the notes and silences are well differentiated 
and the network identified the presence of a chord related with 
the last onset, causing the blackboard to output the three higher 
rated hypotheses of the segment. 

 
Figure 8: Example of automatic transcription of a piano riff. 

 
Figure 9: System’s output of a piano riff with error in the chord 

transcription. 
 
In figure 9 a note sequence (D6 A5 E5) is represented followed 
by a D major chord (D5 F#5 A5). It is plotted here because an 
error is performed in the recognition of the chord showing one 
of the weaknesses of the current implementation. This error is 
due to the presence of a high rated hypothesis for the A4 note, 
product of the strong harmonics of the A5 in the D major chord. 
These make the hypothesis of the note A4 better rated than the 
D5 missing note. As this problem became repetitive in some of 
the experiments, an octave-error detection routine was 

implemented and placed after the output of the blackboard. In 
this example the error detection routine discarded the note A4 in 
favour of its higher octave equivalent, which was already 
detected by the blackboard, leaving empty the output slot 
corresponding to the D5 note of the chord. This extra routine 
disables the system’s handling of octave intervals.  
The last example shown in figure 10 represents a four measures 
section of a piano song, including several chords. For this 
example the octave error detector was disabled, to avoid 
restrictions in the kind of intervals the system can manage. Due 
to this, several mistakes are made in the transcription of the 
notes of three chords (the first three of the figure), where 
correct note hypotheses were discarded by the system in favour 
of their lower octave equivalents. In the plot can be noticed the 
presence of notes between the key numbers 18 and 29, when 
just notes of the key number 30 or higher were performed. The 
same error was detected in the note before the last chord, where 
the note C6 was selected over the correct C5. Another error in 
the transcription is related to the no detection of an onset in the 
seventh second of the song causing a wrong segmentation of 
the piece. The spectrogram of this segment was identified as a 
chord for the neural network, probably due to the presence of 
two strong fundamental pitches in the time window averaged. 
As can be seen in the figure 6 an inexistent chord was plotted 
between the times of 6.7164 and 7.3839 seconds, containing 
both the original notes played in that segment. The other twelve 
notes of the piece and the last chord were correctly identified 
by the system. 

 
Figure 10: Example of automatic transcription of a simple polyphonic 

piano song of four measures. 
 
3.4. Conclusions and next steps 
 
The simple polyphonic system is achieving the automatic 
extraction of score parameters from simple polyphonic piano 
music, performed between the C4 and B6 notes, with up to 
three notes played at the same time and without the octave 
interval included. This is less general than the purpose defined 
on the introduction showing the necessity of some changes in 
the current system 
First, to manage the octave detection problem, new knowledge 
sources should be added to the blackboard architecture based 
on the same principle implemented for the octave-error 
detection routine, but with the possibility of allowing the 
presence of an octave interval when it is truly present in the 
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input. To achieve that, more musical knowledge is necessary in 
the system.  
The architecture of the blackboard will be modified, 
incorporating dynamic structures to handle different sized 
hypotheses, in this case, chords of more than three notes. Also, 
the training space of the network has to be expanded, 
contemplating the recognition of bigger chords and extending 
to all the octaves of the piano. As is showed in [6] the system is 
able to manage monophonic riffs of woodwinds and brass 
instruments, however, to define the next steps towards the 
handling of different instruments, more extensive testing has to 
be performed. 
As a first approach, the results depicted here are very 
encouraging showing that further development of these ideas 
could be the way for more robust and general results.  
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